Week1-2

Goal: To integrate two data frames concerning the number and nationality of tourists leaving for Taiwan, as well as the number of Taiwanese tourists and their destination.

Data Source:

Step1:Import data

library(dplyr)
## 
## Attaching package: 'dplyr'
## The following objects are masked from 'package:stats':
## 
##     filter, lag
## The following objects are masked from 'package:base':
## 
##     intersect, setdiff, setequal, union
library(readxl)
Foreignernation <-read_excel("C:\\Users\\User\\Desktop\\Foreigner_nation.xlsx")
Taiwanesedestination <- read_excel("C:\\Users\\User\\Desktop\\Taiwanese_destination (2).xlsx")
head(Taiwanesedestination)
## # A tibble: 6 x 18
##   `First stop arr~ country `2002` `2003` `2004` `2005` `2006` `2007` `2008`
##   <chr>            <chr>   <chr>  <chr>  <chr>  <chr>  <chr>  <chr>  <chr> 
## 1 Asia             Hong K~ 24188~ 18690~ 25597~ 28070~ 29933~ 30309~ 28511~
## 2 Asia             Mainla~ 1      44     -      -      -      -      188744
## 3 Asia             Japan   797460 731330 10519~ 11804~ 12140~ 12808~ 13098~
## 4 Asia             Korea,~ 120208 179893 298325 368206 396705 457095 363122
## 5 Asia             Singap~ 190455 125491 160088 184926 204834 189835 167479
## 6 Asia             Malays~ 186791 121267 180883 161296 181911 187788 157650
## # ... with 9 more variables: `2009` <chr>, `2010` <dbl>, `2011` <dbl>,
## #   `2012` <dbl>, `2013` <dbl>, `2014` <dbl>, `2015` <dbl>, `2016` <dbl>,
## #   `2017` <dbl>
head(Foreignernation)
## # A tibble: 6 x 17
##   Area  Nation `2002` `2003` `2004` `2005` `2006` `2007` `2008` `2009`
##   <chr> <chr>   <dbl>  <dbl>  <dbl>  <dbl>  <dbl> <chr>  <chr>  <chr> 
## 1 Asia  Japan  977705 659972 890444 1.13e6 1.16e6 11705~ 10905~ 10076~
## 2 Asia  Korea~  86408  94060 149182 1.85e5 1.99e5 228582 252973 170646
## 3 Asia  India   17379  15817  20538 2.20e4 2.25e4 24678  23327  22126 
## 4 Asia  Middl~  10224   8422  12838 1.33e4 1.27e4 13446  12356  12182 
## 5 Asia  Malay~  66516  75869 105246 1.24e5 1.33e5 159839 171630 184577
## 6 Asia  Singa~  80028  66629 101379 1.47e5 1.63e5 184303 189330 180819
## # ... with 7 more variables: `2010` <dbl>, `2011` <dbl>, `2012` <dbl>,
## #   `2013` <dbl>, `2014` <dbl>, `2015` <dbl>, `2016` <dbl>

Step2: Use select() and slice() to set up the range of countries and years.

Foreignernation1<- slice( Foreignernation, 1,2,5,6,7,8,9,10)
Foreignernation2<- select( Foreignernation1,2,13,14,15,16,17)
head(Foreignernation2)
## # A tibble: 6 x 6
##   Nation             `2012`  `2013`  `2014`  `2015`  `2016`
##   <chr>               <dbl>   <dbl>   <dbl>   <dbl>   <dbl>
## 1 Japan             1443009 1434346 1637264 1629193 1896456
## 2 Korea,Republic of  262340  355473  531703  662670  887412
## 3 Malaysia           367817  424053  464518  458401  500496
## 4 Singapore          297624  330293  341857  354767  371663
## 5 Indonesia          169136  176919  186558  181734  192053
## 6 Philippines        105525  101594  136998  139758  171816
Taiwanesedestination1 <- slice( Taiwanesedestination, 3,4,6,5,9,8,7,11 )
Taiwanesedestination2 <- select( Taiwanesedestination1, 2,13,14,15,16,17)
head(Taiwanesedestination2)
## # A tibble: 6 x 6
##   country            `2012`  `2013`  `2014`  `2015`  `2016`
##   <chr>               <dbl>   <dbl>   <dbl>   <dbl>   <dbl>
## 1 Japan             1560300 2346007 2971846 3797879 4295240
## 2 Korea,Republic of  532729  518528  626694  500100  808420
## 3 Malaysia           193170  226919  198902  201631  245298
## 4 Singapore          241893  297588  283925  318516  319915
## 5 Indonesia          198893  166378  170301  176478  175738
## 6 Philippines        211385  129361  133583  180091  231801

Step3: Use names() to rename the name of column

(FT=Foreign Tourist / TT=Taiwanese Tourist)

names(Foreignernation2)[names(Foreignernation2)=="2012"]<-"2012_FT"
names(Foreignernation2)[names(Foreignernation2)=="2013"]<-"2013_FT"
names(Foreignernation2)[names(Foreignernation2)=="2014"]<-"2014_FT"
names(Foreignernation2)[names(Foreignernation2)=="2015"]<-"2015_FT"
names(Foreignernation2)[names(Foreignernation2)=="2016"]<-"2016_FT"
names(Taiwanesedestination2)[names(Taiwanesedestination2)=="2012"]<-"2012_TT"
names(Taiwanesedestination2)[names(Taiwanesedestination2)=="2013"]<-"2013_TT"
names(Taiwanesedestination2)[names(Taiwanesedestination2)=="2014"]<-"2014_TT"
names(Taiwanesedestination2)[names(Taiwanesedestination2)=="2015"]<-"2015_TT"
names(Taiwanesedestination2)[names(Taiwanesedestination2)=="2016"]<-"2016_TT"
head(Foreignernation2)
## # A tibble: 6 x 6
##   Nation            `2012_FT` `2013_FT` `2014_FT` `2015_FT` `2016_FT`
##   <chr>                 <dbl>     <dbl>     <dbl>     <dbl>     <dbl>
## 1 Japan               1443009   1434346   1637264   1629193   1896456
## 2 Korea,Republic of    262340    355473    531703    662670    887412
## 3 Malaysia             367817    424053    464518    458401    500496
## 4 Singapore            297624    330293    341857    354767    371663
## 5 Indonesia            169136    176919    186558    181734    192053
## 6 Philippines          105525    101594    136998    139758    171816
head(Taiwanesedestination2)
## # A tibble: 6 x 6
##   country           `2012_TT` `2013_TT` `2014_TT` `2015_TT` `2016_TT`
##   <chr>                 <dbl>     <dbl>     <dbl>     <dbl>     <dbl>
## 1 Japan               1560300   2346007   2971846   3797879   4295240
## 2 Korea,Republic of    532729    518528    626694    500100    808420
## 3 Malaysia             193170    226919    198902    201631    245298
## 4 Singapore            241893    297588    283925    318516    319915
## 5 Indonesia            198893    166378    170301    176478    175738
## 6 Philippines          211385    129361    133583    180091    231801

Step4: Integrate two data frames with cbind(), then delete the “country” column by assigning it to NULL.

Comparison <- cbind(Foreignernation2, Taiwanesedestination2)
Comparison$country = NULL
head(Comparison)
##              Nation 2012_FT 2013_FT 2014_FT 2015_FT 2016_FT 2012_TT
## 1             Japan 1443009 1434346 1637264 1629193 1896456 1560300
## 2 Korea,Republic of  262340  355473  531703  662670  887412  532729
## 3          Malaysia  367817  424053  464518  458401  500496  193170
## 4         Singapore  297624  330293  341857  354767  371663  241893
## 5         Indonesia  169136  176919  186558  181734  192053  198893
## 6       Philippines  105525  101594  136998  139758  171816  211385
##   2013_TT 2014_TT 2015_TT 2016_TT
## 1 2346007 2971846 3797879 4295240
## 2  518528  626694  500100  808420
## 3  226919  198902  201631  245298
## 4  297588  283925  318516  319915
## 5  166378  170301  176478  175738
## 6  129361  133583  180091  231801